jueves, 27 de septiembre de 2012


La teoria del Big Bang y el origen del Universo

  El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.

Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.

En 1948 el físico ruso nacionalizado estadounidense George Gamow modificó la teoría de Lemaître del núcleo primordial. Gamow planteó que el Universo se creó en una explosión gigantesca y que los diversos elementos que hoy se observan se produjeron durante los primeros minutos después de la Gran Explosión o Big Bang, cuando la temperatura extremadamente alta y la densidad del Universo fusionaron partículas subatómicas en los elementos químicos.

Cálculos más recientes indican que el hidrógeno y el helio habrían sido los productos primarios del Big Bang, y los elementos más pesados se produjeron más tarde, dentro de las estrellas. Sin embargo, la teoría de Gamow proporciona una base para la comprensión de los primeros estadios del Universo y su posterior evolución. A causa de su elevadísima densidad, la materia existente en los primeros momentos del Universo se expandió con rapidez. Al expandirse, el helio y el hidrógeno se enfriaron y se condensaron en estrellas y en galaxias. Esto explica la expansión del Universo y la base física de la ley de Hubble.

Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radioastrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.

Uno de los problemas sin resolver en el modelo del Universo en expansión es si el Universo es abierto o cerrado (esto es, si se expandirá indefinidamente o se volverá a contraer).

Un intento de resolver este problema es determinar si la densidad media de la materia en el Universo es mayor que el valor crítico en el modelo de Friedmann. La masa de una galaxia se puede medir observando el movimiento de sus estrellas; multiplicando la masa de cada galaxia por el número de galaxias se ve que la densidad es sólo del 5 al 10% del valor crítico. La masa de un cúmulo de galaxias se puede determinar de forma análoga, midiendo el movimiento de las galaxias que contiene. Al multiplicar esta masa por el número de cúmulos de galaxias se obtiene una densidad mucho mayor, que se aproxima al límite crítico que indicaría que el Universo está cerrado.

La diferencia entre estos dos métodos sugiere la presencia de materia invisible, la llamada materia oscura, dentro de cada cúmulo pero fuera de las galaxias visibles. Hasta que se comprenda el fenómeno de la masa oculta, este método de determinar el destino del Universo será poco convincente.

Muchos de los trabajos habituales en cosmología teórica se centran en desarrollar una mejor comprensión de los procesos que deben haber dado lugar al Big Bang. La teoría inflacionaria, formulada en la década de 1980, resuelve dificultades importantes en el planteamiento original de Gamow al incorporar avances recientes en la física de las partículas elementales. Estas teorías también han conducido a especulaciones tan osadas como la posibilidad de una infinidad de universos producidos de acuerdo con el modelo inflacionario.

Sin embargo, la mayoría de los cosmólogos se preocupa más de localizar el paradero de la materia oscura, mientras que una minoría, encabezada por el sueco Hannes Alfvén, premio Nobel de Física, mantienen la idea de que no sólo la gravedad sino también los fenómenos del plasma, tienen la clave para comprender la estructura y la evolución del Universo.







ENDOSIMBIOSIS

Se denomina endosimbiosis a la asociación en la cual un organismo habita en el interior de otro organismo. Etimológicamente el término podría usarse para designar a cualquier simbionte que residiera en el interior del cuerpo de otro ser vivo,1 aunque también pueda usarse el término endosomático (p.ej. simbionte endosomático). Éste es el caso, por ejemplo, de muchas de las bacterias que forman parte de la microbiota intestinal.
Los orgánulos de origen endosimbiótico aparecen muy transformados, pero conservan un genoma propio y se multiplican autónomamente, revelando su origen como organismos distintos.
Gracias a la endosimbiosis los organismos eucarióticos disfrutan de la capacidad de realizar procesos metabólicos que evolucionaron originalmente en bacterias. Es el caso de la respiración, de la que se ocupan las mitocondrias, la fotosíntesis, a cargo de los plastos o la fijación biológica de nitrógeno, realizada por bacterias, a menudo intracelulares, en las raíces de ciertas plantas.
En 1971 Lynn Margulis propuso la teoría de la endosimbiosis en serie, que explica la aparición de la célula eucariótica por asimilación simbiótica de varias bacterias con habilidades diferenciadas.




Argumentos que se esgrimieron a favor y en contra de la teoría

Argumentos a favor

La evidencia de que las mitocondrias y los plastos surgieron a través del proceso de endosimbiosis son las siguientes:
  • El tamaño de las mitocondrias es similar al tamaño de algunas bacterias.
  • Las mitocondria y los cloroplastos contienen ADN bicatenario circular cerrado covalentemente - al igual que los procariotas- mientras que el núcleo eucariota posee varios cromosomas bicatenarios lineales.
  • Están rodeados por una doble membrana, lo que concuerda con la idea de la fagocitosis: la membrana interna sería la membrana plasmática originaria de la bacteria, mientras que la membrana externa correspondería a aquella porción que la habría englobado en una vesícula.
  • Las mitocondrias y los cloroplastos se dividen por fisión binaria al igual que los procariotas (los eucariotas lo hacen por mitosis). En algunas algas, tales como Euglena, los plastos pueden ser destruidos por ciertos productos químicos o la ausencia prolongada de luz sin que el resto de la célula se vea afectada. En estos casos, los plastos no se regeneran.
  • En mitocondrias y cloroplastos los centros de obtención de energía se sitúan en las membranas, al igual que ocurre en las bacterias. Por otro lado, los tilacoides que encontramos en cloroplastos son similares a unos sistemas elaborados de endomembranas presentes en cianobacterias.
  • En general, la síntesis proteica en mitocondrias y cloroplastos es autónoma.
  • Algunas proteínas codificadas en el núcleo se transportan al orgánulo, y las mitocondrias y cloroplastos tienen genomas pequeños en comparación con los de las bacterias.. Esto es consistente con la idea de una dependencia creciente hacia el anfitrión eucariótico después de la endosimbiosis. La mayoría de los genes en los genomas de los orgánulos se han perdido o se han movido al núcleo. Es por ello que transcurridos tantos años, hospedador y huésped no podrían vivir por separado.
  • En mitocondrias y cloroplastos encontramos ribosomas 70s, característicos de procariotas, mientras que en el resto de la célula eucariota los ribosomas son 80s.
  • El análisis del RNAr 16s de la subunidad pequeña del ribosoma de mitocondrias y plastos revela escasas diferencias evolutivas con algunos procariotas.
  • Una posible endosimbiosis secundaria (es decir, implicando plastos eucariotas) ha sido observado por Okamoto e Inouye (2005). El protista heterótrofo Hatena se comporta como un depredador e ingiere algas verdes, que pierden sus flagelos y citoesqueleto, mientras que el protista, ahora un anfitrión, adquiere nutrición fotosintética, fototaxia y pierde su aparato de alimentación.
Las bacterias, fusionadas en simbiosis, nos dejan pistas de su anterior independencia. Tanto las mitocondrias como los plastos son bacterianos en su tamaño y forma. Todavía más importante es que estos orgánulos se reproducen de manera que hay muchos presentes a la vez en el citoplasma pero nunca dentro del núcleo. Ambos tipos de orgánulos, los plastos y las mitocondrias, no sólo proliferan dentro de las células sino que se reproducen de forma distinta y en momentos distintos a los del resto de la célula en la que residen. Ambos tipos, probablemente 1.000 millones de años después de su fusión inicial, retienen sus propias reservas reducidas de ADN. Los genes del ácido desoxirribonucleico (ADN) de los ribosomas de las mitocondrias todavía recuerdan sorprendentemente a los de las bacterias respiradoras de oxígeno que viven actualmente por su cuenta. Los genes ribosómicos de los plastos son muy parecidos a los de las cianobacterias. A principios de los setenta, cuando se compararon por primera vez las secuencias de nucleótidos del ADN de los plastos de las células algales con las secuencias de las cianobacterias de vida libre, ¡se descubrió que el ADN del cloroplasto era mucho más parecido al ADN de la cianobacteria que al ADN del núcleo de la propia célula algal!
Margulis, Planeta simbiótico.30

Argumentos en contra

  • Las mitocondrias y los plastos contienen intrones, una característica exclusiva del ADN eucariótico. Por tanto debe de haber ocurrido algún tipo de transferencia entre el ADN nuclear y el ADN mitocondrial/cloroplástico.
  • Ni las mitocondrias ni los plastos pueden sobrevivir fuera de la célula. Sin embargo, este hecho se puede justificar por el gran número de años que han transcurrido: los genes y los sistemas que ya no eran necesarios fueron suprimidos; parte del ADN de los orgánulos fue transferido al genoma del anfitrión, permitiendo además que la célula hospedadora regule la actividad mitocondrial.
  • La célula tampoco puede sobrevivir sin sus orgánulos: esto se debe a que a lo largo de la evolución gracias a la mayor energía y carbono orgánico disponible, las células han desarrollado metabolismos que no podrían sustentarse solamente con las formas anteriores de síntesis y asimilación.
Las membranas internas de las células eucariotas, sobre todo la membrana nuclear y el retículo endoplasmático, se explican mejor como invaginaciones. Como el cromosoma de los procariotas se halla unido a la membrana celular durante su división (Stanier, Doudoroff & Adelberg, 1970), una invaginación de esta parte de la membrana celular situaría automáticamente a los cromosomas en el interior del núcleo. Las conexiones y la semejanza molecular entre los flagelos y centríolos podría explicarse suponiendo que en los primeros eucariotas la membrana nuclear continuaría unida a la membrana celular externa durante la evolución simultánea del aparato mitótico y de los flagelos. Podría explicarse la existencia de DNA en el cuerpo basal del flagelo por adición de un plásmido, tal como han sugerido Raff & Mahler.
Stebbins, Evolución", 1980.31

11 comentarios:

  1. Karla Roxana de la Rosa Piñon ((:

    ResponderEliminar
  2. informacion completa!! sarahi carballo

    ResponderEliminar
  3. Me gustan los temas..!!! Grecia Gamboa

    ResponderEliminar
  4. Kenner Alberto Molina XD ... muy buen blog.

    ResponderEliminar
  5. keyla rodriguez sumano: esta muy bien estructurado la informacion :)

    ResponderEliminar
  6. Este comentario ha sido eliminado por el autor.

    ResponderEliminar
  7. Profe hace falta la información de la estructura celular animal y vegetal! por favor podría ponerla? :(

    ResponderEliminar
  8. Ok en breve la coloco estoy seguro que mañana a medio día ya está, saludos :)

    ResponderEliminar
  9. Cuales son las moléculas de alta energía y dibujar sus estructuras químicas

    ResponderEliminar